H(t)=-16t^2+50+3

Simple and best practice solution for H(t)=-16t^2+50+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+50+3 equation:



(H)=-16H^2+50+3
We move all terms to the left:
(H)-(-16H^2+50+3)=0
We get rid of parentheses
16H^2+H-50-3=0
We add all the numbers together, and all the variables
16H^2+H-53=0
a = 16; b = 1; c = -53;
Δ = b2-4ac
Δ = 12-4·16·(-53)
Δ = 3393
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3393}=\sqrt{9*377}=\sqrt{9}*\sqrt{377}=3\sqrt{377}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{377}}{2*16}=\frac{-1-3\sqrt{377}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{377}}{2*16}=\frac{-1+3\sqrt{377}}{32} $

See similar equations:

| –19x−–13x=–18 | | G(10)=25x+80 | | 30+0.15x=36+0.1x | | 3(5x+3)+18=15x+-2 | | 3(5x+3)+18=15x+-1 | | 4r+r-4r+3=15 | | 4=w/7-5 | | -14d-9d+-2d+–15=–8 | | x17=221 | | 3(5x+3)+18=15x+18 | | 20+9-8x=4x | | –17z=–391 | | 3(5x+3)+18=15x+4 | | -14d-9d+-2d+-15=-8 | | 4n/3n=1 | | 3(5x+3)+18=15x+2x | | 3(5x+3)+18=15x+1x | | –2(5x–3)=–10x–5 | | 3(5x+3)+18=15x+3 | | 3(5x+3)+18=15x+2 | | 5.6=l | | 3(5x+3)+18=15x+1 | | 1/2x7/6=3/7 | | 3(5x+3)+18=15x+5 | | 10x+9=11x+6 | | 14u-9u-2=18 | | -3x+5+7x=-x+25 | | 5(x+3)-2x-7=3(x+3)-5 | | 6m-4m-m=7 | | 6x3=8+11 | | X-0.35x=100 | | 11x+x+3x-14x=20 |

Equations solver categories